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Abstract

A new Dispersion-Relation-Preserving (DRP) scheme has been developed using the Lax–Wendroff
methodology. Two collocated grids are placed in a staggered formation and a staggered DRP scheme is
used to calculate the spatial differentiation of the propagation and convection terms. A staggered filtering
scheme of a six points stencil is developed to complete the transformation from one grid to another.
Existing DRP Runge–Kutta schemes are used for the time marching. Stability limits and accuracy issues
are investigated using a simple 1D advection equation. The new method is then tested for monopole and
quadrupole radiation, diffraction effects of an aperture in a wall, and convection effects of shear flow. All
demonstrate the good accuracy and numerical stability of the new method.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Computational Aeroacoustics (CAA) requires the calculation of sound over long distances with
minimum amplitude and phase distortion. This rather difficult task becomes even more difficult
due to the need to calculate the source at the same time. This is because of the difference in the
scales between the source field and the sound field, causing the latter to have a much larger length
scale and a much lower energy level, particularly in a subsonic environment. Sometimes the Green
function approach can be used to tackle these issues efficiently as in basic radiation calculation [1].
However, this technique usually requires using restrictive assumptions such as parallel mean flow
and/or is limited to a certain mechanism of sound generation, for example, of a low Mach number
or of a high frequency. A more general method but also more computationally expensive is to
march the governing equations of the sound field in time, whether they are of an acoustic analogy
[2] or of an appropriate form of Euler [3] and Navier–Stokes equations [4]. This method is the
subject of this paper.
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In order to achieve an efficient time-marching method, Tam and Webb [5] developed a
Dispersion-Relation-Preserving (DRP) method, which includes a fourth order DRP spatial
differentiation scheme for an equally spaced collocated grid. A DRP scheme for an equally spaced
staggered grid was developed by Djambazov et al. [6], who also showed how to model the
presence of a rigid body by using the step-wise configuration. Recently, Avital [7] developed a
DRP scheme for a non-uniform staggered grid of a finite volume type in order to tackle more
efficiently the difference in the length scale between the sound field and the source field.
The advantage of the staggered scheme over the collocated scheme is that it does not produce

parasite short waves in the spatial differentiation and thus leads to a better numerical accuracy
and stability [7]. However, the collocated DRP scheme is still required for calculating the
convection terms even on the staggered grid and numerical dissipation has to be added in order to
stabilize the simulation. This can be achieved by adding a dissipation term that acts mainly on the
short waves, but it also requires the specification of a numerical Reynolds number. The aim of this
paper is to develop a DRP method by using two collocated grids in a staggered formation and
thus the staggered differentiation DRP scheme can be used for all the terms. This is actually the
Lax–Wendroff methodology and here it will be extended to an optimized high order technique.
The next section develops the numerical method and examines stability and accuracy issues.

Test cases are investigated in Section 3 and the work is summarized in Section 4.

2. Numerical formulation

The new method is applied to the linearized Euler equations in this work. However, initially it is
easier to consider some basic issues using a simple 1D advection equation.

2.1. The 1D advection equation

Consider the following 1D advection equation:

@u

@t
þ c

@u

@x
¼ 0: ð1Þ

Then the basic two-steps Lax–Wendroff (LW) method is

u
nþ1=2
iþ1=2 ¼ 0:5ðun

i þ un
iþ1Þ � 0:5sðu

n
iþ1 � un

i Þ; s � cDt=h; ð2aÞ

unþ1
i ¼ un

i � sðunþ1=2
iþ1=2 � u

nþ1=2
i�1=2 Þ: ð2bÞ

h is the grid spacing and Dt is the time step. The second order in space is achieved by the staggered
differentiation ðun

iþ1 � un
i Þ=h in Eq. (2a) and ðunþ1=2

iþ1=2 � u
nþ1=2
i�1=2 Þ=h in Eq. (2b), and by the staggered

filtering/averaging 0:5ðun
i þ un

iþ1Þ in Eq. (2a). The second order accuracy in time is achieved by
using a second order Runge–Kutta (RK) marching scheme that uses time levels n and n þ 1=2 to
predict time level n þ 1: The overall method is stable for sp1 and has a fourth order numerical
dissipation due to the filtering in Eq. (2a).
This basic method can be extended to a high order DRP scheme by using the DRP RK schemes

of Hu et al. [8] for the time marching, and staggered schemes for the spatial differentiation and
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filtering, leading to

Kl
iþð1�sÞ=2 ¼ DtF ðun

iþs=2 þ blKl�1
iþs=2Þ; l ¼ 1;y; p; s ¼ ðl � 1Þ%2; ð3aÞ

unþ1
i ¼ un

i þ Kl
i ; ð3bÞ

where % is the modulo and F ¼ �c@u=@x in the case of (1). p must be an even number and if
p ¼ 2 then the time marching is identical to the basic LW of (2a) and (2b). The coefficients of bl

are given in Ref. [8], which are for the two, four and six sub-time steps RK schemes. The four and
six sub-time steps schemes were optimized by Hu et al. [8] in order to reduce dispersion errors and
they have at least a second order accuracy.
The derivative @u=@x is to be calculated by a staggered DRP scheme of a six points stencil and

fourth order accuracy following Avital [7]:

@u

@x

����
iþ1=2

¼ aD
ðui�1 � 27ui þ 27uiþ1 � uiþ2Þ

24h
þ ð1� aDÞ

ðui�2 � 125ui þ 125uiþ1 � uiþ3Þ
120h

: ð4Þ

aD is taken as 1.769304513 in order to achieve pseudo-spectral behaviour. At the odd sub-time
steps ðl ¼ 1; 3yÞ; spatial filtering is required to calculate un

iþ1=2: A fourth order central filter of a
six points stencil can be expressed as

uiþ1=2 ¼ a
ð�ui�1 þ 9ui þ 9uiþ1 � uiþ2Þ

16
þ ð1� aÞ

ð�ui�2 þ 25ui þ 25uiþ1 � uiþ3Þ
48

; ð5Þ

where a is a constant to be used to optimize the scheme.
The goal is to achieve an optimized stable method. We have already chosen for this purpose

DRP schemes for the time marching and spatial differentiation, so what is left is to optimize the
filtering scheme in Eq. (5). Fig. 1(a) shows the effect of a on the filtering ratio, which is defined as
the ratio between uiþ1=2 after the filtering to that before, and where ui is taken as expðjkxiÞ: It is
seen that the filtering ratio becomes negative in high wave numbers for ao� 1:25 and it also
became larger than the one in medium wave numbers for a larger than about 1.5. Both effects are
undesirable and thus a should be limited to a certain range. This range can be figured out from
Fig. 1(b), which shows the effect of a and the Courant number ðsÞ on the stability of the method
for the four sub-time steps RK method. The results shown in that figure were achieved by
assuming again ui ¼ expðjkxiÞ; marching one time step and then checking if the magnitude of unþ1

i

was larger than one for 0pkDxpp: It is seen that keeping �6pap1:5 and the appropriate limit
on s keeps the method stable. The range for a can be explained by the behaviour outlined in
Fig. 1(a) and the higher than one limit for the Courant number is due to the four sub-time steps
RK scheme.
Taking un

i ¼ expðjkxiÞ analytically leads to the relation unþ1
i =un

i ¼ expð�jkhsÞ: Using this
relation the amplification of the amplitude and the phase error after one time step were calculated
for the second order, fourth order schemes and the DRP scheme for various values of a: The
results are shown in Fig. 2 for s ¼ 0:5:
The results show that the DRP scheme manages to suppress better the Nyquist (oddball) wave

number than the other schemes. This is due to the better resolution in the spatial differentiation,
leading to a better suppression in the filtering. It is an advantage since the high wave numbers are
not expected to be well resolved and numerical instability usually occurs due to accumulation of
energy in the high wave numbers. However, reducing a below �1:25 stops the suppression of the
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high wave numbers from being monotonic, which is consistent with the finding in Fig. 1(a) of a
negative filtering ratio. This is an undesired behaviour that can lead to instability as was seen in
Fig. 1(b). A high positive a also keeps the phase error small as is demonstrated in Fig. 2(b), thus
leading to the conclusion that a should be taken as high as possible, which is about 1.5 due to
stability constraints.
To check the effect of the Courant number ðsÞ on the optimum value of a; the following norm

was calculated for various a and s:

I �
unþ1

i

un
i

� eð�jkhsÞ

����
����

����
���� � 1

p=2

Z p=2

0

unþ1
i

un
i

� eð�jkhsÞ

����
����
2

dðkhÞ; ð6Þ

where j j in the integral denotes a complex modulus. The integration limits are due to the
expectation that the resolved wave number range will be at 0okhop=2 [5]. The results are shown
in the contour plot of Fig. 3, which shows that taking aD2:5 leads to the lowest I in the widest
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Fig. 1. The effect of a-the filtering constant on (a) the filtering ratio of (5) and on (b) the stability of the DRP method
when using the four sub-time steps RK scheme of Eqs. (3a) and (3b).
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range of s: Unfortunately, this value of a can lead to instability according to Fig. 1(b), thus the
optimum value of a should be kept as 1.5 as was concluded for the case of s ¼ 0:5; while minding
that it should be further reduced for high s according to Fig. 1(b).

2.2. The linearized Euler equations

The DRP method developed in Section 2.1 can also be applied to the linearized Euler equations:

@r
@t

þ
@

@xi

ð %rui þ r %uiÞ ¼ Q; ð7aÞ

@ðr %ui þ %ruiÞ
@t

þ
@

@xj

ðruiuj þ %rui %uj þ r %ui %ujÞ þ %c
2 @r
@xi

¼ Fi; ð7bÞ
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after marching one time step of s ¼ 0:5 when using the four sub-time steps RK scheme.
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where Q is the volume source and Fi is the force source. The bar denotes a mean flow property that
is calculated for example using a CFD tool and the fluctuations are assumed to be isentropic, i.e.,
@p=@r ¼ %c2: The equations can be marched in time using the schemes in Eqs. (3a) and (3b), where ui

has to be extracted from (7b) every sub-time step. The spatial differentiation and filtering are carried
out as in the 1D case using (4) and (5). However, there is a need for an additional filtering in the
directions normal to the direction of the differentiation in order to move between the two grids.
The effect of rigid bodies in the multi-dimensional case is of practical interest and in this work

the approach of Djambazov et al. [6] is adopted, however, with some differences. As in Ref. [6] the
rigid body is modelled using a step-wise configuration, assuming that the sound wave length is
much larger than the length scale of any introduced roughness, which is the grid spacing. The wall
conditions are of zero normal velocity and zero gradients for the tangential velocities and density.
However, in order to avoid complications at corners and the use of one-sided differentiation, these
conditions are implemented using a central scheme of second order accuracy. Due to this
simplification, the wall conditions have to be implemented only on the grid of the odd sub-time
steps and the simulation will yield the right conditions on the wall for the other grid. Furthermore,
one point away from the wall the scheme can already be made fourth order normal to the wall and
two points away to a full DRP accuracy. An illustration of this technique is given in Fig. 4.
The far field components behave in the leading order as plane waves governed by the 1D

advection equation and hence is the importance of the analysis in Section 2.1. The performance of
the new method for the entire sound field will be tested in the next section for some fundamental
cases representing basic radiation, rigid body effects and convection.

3. Test cases

Numerical simulations were performed to test the performance of the new method in relatively
real situations. All simulations were carried out in 1D or 2D to ease the computational burden.
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Fig. 3. The effect of a and the Courant number ðsÞ on the accuracy of the DRP method after one time step, where the
norm I is defined in Eq. (6).

E.J. Avital / Journal of Sound and Vibration 270 (2004) 483–494488



The mean density was normalized to one and the speed of sound to 2.5. Non-reflecting boundary
conditions were achieved by adding buffer zones on the sides of the computational domain [9],
where a volume/body force was added to force the fluctuations to their mean value, which is zero.
The first case was to observe the sound generation by a 1D monopole with no mean flow and

thus it was taken as

Q ¼ e�sx2 sinðotÞ; Fx ¼ Fy ¼ 0; ð8Þ

where s ¼ 1 and o ¼ p: The Root Mean Square (r.m.s.) of the density fluctuations are shown in
Fig. 5 for the second order, fourth order and the DRP schemes with a resolution of about 10
points per wavelength. As in Section 2, all schemes used the same DRP four sub-time steps RK
method. The second order scheme clearly over-predicts the near field when compared with the
higher order schemes and it also does not capture correctly the far field by showing a non-physical
decaying field. The fourth order scheme does much better but it still shows some level of a

ARTICLE IN PRESS

DRP
left
as
zero

2nd
order
b.c.

2nd
order

4th
order

simulated

rigid wall

Fig. 4. Schematic description of the wall treatment. Circles denote the grid points at even sub-time steps and ellipses at

odd sub-time steps. The accuracy denotes the spatial accuracy normal to the wall.

x

D
en

si
ty

 R
M

S

-20 -10 0 10 20

0. 15

0.175

0.2

0.225

0.25 2nd Order

4th Order

DRP

Far field 1D monopole
analytical solution

Fig. 5. The RMS of the density fluctuations generated by the 1D monopole of Eq. (8). All schemes were marched in

time by the DRP four sub-time steps Runge–Kutta method.

E.J. Avital / Journal of Sound and Vibration 270 (2004) 483–494 489



non-physical decay in the far field. The DRP scheme shows the best accuracy and its farfield
predication is almost identical to the analytical result, which was derived by assuming a compact
source. Reducing the number of grid points by half to 5 points per wavelength caused some
spurious fluctuations even in the DRP scheme. Thus as in other DRP schemes that are based on a
stencil of 6–7 grid points, this DRP scheme also requires about 10 points per wave length for
achieving good accuracy.
Simulating a 1D dipole led to a conclusion similar to that drawn from the 1D monopole

simulations. Thus, the second test case to be shown is a 2D quadrupole sound radiation. Here a
lateral quadrupole was generated by specifying the sources as

Q ¼ ðx2 � y2Þe�sðx2þy2Þ sinðotÞ; Fx ¼ Fy ¼ 0; ð9Þ

where s ¼ 1:5 and o ¼ p: The instantaneous density fluctuations produced by the DRP scheme
are shown in Fig. 6(a), with a resolution of about 12 points per wavelength. The plot is the same as
produced by the staggered grid of Avital [7]. A comparison between the various schemes is shown
in Fig. 6(b) for the RMS of the density fluctuations at y ¼ 0: As in the monopole case, the second
order scheme over-predicts the near field and also the rate of decay of the far field, which should
be of 1=

ffiffi
r

p
: The fourth order and the DRP schemes manage to capture correctly the energy level

of the far field; however, the fourth order scheme over-predicts the near field and shows some non-
physical oscillations at the edge of the source, i.e., jxjD2: The success of both schemes to capture
correctly the farfield decay, even though they were less successful in capturing the exact peaks of
the near field is due to the correct prediction of the total acoustic power output of the source.
The modelling of a rigid body was tested successfully for reflection problems of a rigid plane

and a sudden change in the cross-section of a duct. Here the interesting problem of diffraction by
an aperture in a wall is reported. A wall was put on the right side of the 1D monopole described in
Eq. (8). The distance between the wall centre to the source centre was three times the sound
wavelength and the wall thickness was one-fifth of the wavelength. Fig. 7 shows the instantaneous
density fluctuations for two cases, a wall with an aperture of a width of four times the wavelength
and an aperture of a width of half the wavelength. The resolution is about 20 points per
wavelength in order to model the wall thickness and the aperture width accurately. As expected
the sound field with the wide aperture shows little diffraction, which is mostly near the edges of
the aperture. Most of the sound that passes the aperture continues to propagate in relatively
straight wave fronts. On the other hand, the sound field with the narrow aperture shows a much
stronger diffraction effect where the wave fronts become circular after passing the aperture. A
strong reflected sound wave on the left side of the wall causes a standing wave such that its front is
slightly bent near the aperture due to the reflected and diffracted waves from the aperture. A more
detailed and more quantitative comparison to ray acoustics in terms of reflection and diffraction
effects has been performed for the problem of acoustic barriers and is reported in Refs. [10,11].
Finally, the modelling of the convection terms was tested by putting the quadrupole of (9)

inside a mean parallel shear flow representing the mixing region in a subsonic jet [12]

%u ¼ 0:5½1þ tanhðb2ðY=y � y=Y ÞÞ	; b2 ¼ 0:25Y=d2: ð10Þ

U is the centreline velocity, Y is the jet half-width and d2 is the momentum thickness. In our case
Y was taken as 1, d2 as 0.4. The instantaneous density fluctuations are shown in Fig. 8. The plot
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agrees well with the result of Avital [7], showing the generation of a cone of silence downstream
due to shear refraction and the collapse of the upstream radiation due to the Doppler effect.
It should be noted that none of the reported simulations showed numerical instability as long as

the stability constraints discussed in Section 2.1 were followed. This is due to the internal
dissipation mechanism of the scheme that acts on the high wave numbers and which is not present
in the other DRP schemes mentioned in the introduction. However, some caution has to be
exercised when the convection terms are simulated in a shear flow environment. For example
when the source frequency in the jet model of Fig. 8 was reduced to St ¼ 0:3; strong instability
waves appeared in the shear flow. This is a physical phenomenon but it also shows that the current
method can produce exponentially growing fluctuations.
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4. Summary and outlook

A new DRP scheme for simulating sound in free and wall-bounded domains has been
developed. It is based on the Lax–Wendroff methodology in which two collocated grids are placed
in a staggered formation relative to each other. Existing DRP Runge–Kutta schemes are used for
the time marching and an existing staggered DRP scheme of a six points stencil is used for the
spatial differentiation. A new staggered filtering scheme of a six points stencil is developed and
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optimized while taking into account stability constraints. The new scheme has been investigated
for the 1D advection equation and the linearized Euler equations. Basic radiation from
monopoles and quadrupoles as well as diffraction and convection effects have been simulated to
investigate the capability of the new method.
Further computational efficiency can be gained if non-uniform grids are used to cluster points

in the vicinity of sources and rigid bodies with small length scales as the wall in Fig. 7. This can be
achieved by mapping a uniform computational domain to a non-uniform physical domain. For
example the algebraic mapping of Avital [7] maps a uniform grid to two blocks of uniform grids
with a smooth transition between them. It has been planned to use this mapping and a variation
of the current DRP method to model the Navier–Stokes equations in order to investigate flows
dominated by feedback mechanism. Further use of the new method has been in studying acoustic
barriers as mentioned before and these results are reported in Refs. [10,11].
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